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1.  (a) Assuming that in a recursive quick sort, each recursive call partitions the input array into 
two roughly equal halves, give the recurrence relation depicting the time complexity; hence, 
obtain a close form of the time complexity. 

   

  (b) Write a recursive C function findMed which returns the median of a one-dimensional 
array of integers, that is, the element which is larger than half of the elements and smaller 
than half of the elements. Suppose a1 <= a2 <= ・ ・ ・ <= an is the sorted version of the 
input array A. If n = 2k + 1, then the element ak+1 is the median of A. On the other hand, if n 
= 2k, we take ak as the median of A. Your function should use a partitioning technique as in 
quick sort. Use the following function prototype: int findMed ( int A[], int 
startidx, int endidx, const int medidx ); 
Here the second and the third parameters are the start and end indices of the current 
partition; the fourth parameter is the index of the median in the sorted version of A and is 
kept constant across the calls. 

   
2.  The absolute distance between two integers x1 and x2 is given by | x2 – x1 |. Write a 

function which sorts an array x[ ] of n integers in ascending order of their absolute 
distances with a given number z. For example, given x[ ] = {9, 1, 12, 4, 2} and z = 6, the 
sorted array will be x[ ] = {4, 9, 2, 1, 12}. Note that 4 is closest to 6, and 12 is farthest 
from 6, in terms of absolute distances. The function will have the following prototype: 
void dist_sort( int x[ ], int n, int z ) ; 

   
3.  You are given an m × n array A of integers, each row of which is a sorted list of size n. 

Your task is to merge the m sorted lists and store the merged list in a one-dimensional array 
B. It is given that each row does not contain repetition(s) of integers, that is, the n integers 
in each sorted list are distinct from one another. However, integers may be repeated in 
different rows. During the merging step, you must remove all these repetitions. 
Complete the following function to achieve this task. The function uses an array of m 
indices, where the i-th index is used for reading from the i-th row (0 <= i <= m − 1). The 
function starts by initializing each of these read indices to point to the beginning of the 
corresponding row. Subsequently, inside a loop, it computes the minimum of the m 
elements pointed to by these indices. The minimum is then written to the output array. Note, 
however, that during the computation of this minimum, we do not need to consider those 
rows all of whose elements have already been written to the output array B. Finally, for all 
rows containing this minimum element at the current read index positions, the index values 
are incremented. The function is supposed to return the total number of elements written to 
the output array B. 

  #define INFINITY 123456789 
int merge ( int B[], int A[][MAX], int m, int n ) 
/* A is the input two-dimensional array of size m× n. 
B is the output array whose size is to be returned. */ 
{ 
int index[MAX], i, k, min; /* Do not use other variables */ 
for (i=0; i<______________ ; ++i) index[i] =_______________ ; 
k = _______________; /* k is for writing to B[] */ 
while (1) { /* Let us decide to return inside this loop */ 
min = INFINITY; /* Initialize min to a suitably large value */ 
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/* Write a loop for computing the minimum */ 
for (________________ ) { 
if_____________________ 
min =___________________________ ; 
} 
/* If all input arrays are fully processed, return the size of B */ 
______________________________________________________ 
/* Otherwise, write the computed minimum to B */ 
______________________________________ 
/* Advance all relevant indices */ 
______________________________________________ 
for (_______________________ ) { 
if____________________________________ 
_________________________________________; 
} 
} 
} 

   
4.  Consider two integer arrays A and B of the same size n > 2. We define a relation A 

_ B if there exists an index j in the range 0 6 j 6 n�1 such that A[ j] < B[ j], and for 
all i in the range 0 6 i < j, we have A[i] = B[i]. Note that for any two arrays A and B 
of size n, exactly one of the three cases hold: (a) A _ B, (b) B _ A, or (c) A = B (that 
is, A and B are identical for all elements). As examples, take n = 3, and observe 
that (1;2;3) <(1;2;4) < (1;4;2) < (3;0;0). 
You are given an m_n two-dimensional array M. Treat each row of M as a one-
dimensional array of size n. The relation _ just defined apply to the rows of M. Your 
task is to bubble sort the rows of M with respect to this relation. This means that if 
R1 and R2 are two rows of M with R1 _ R2, then R1 should appear before R2 in the 
sorted output. 

  (a) Complete the following function which takes two arrays A and B of size n as 
inputs, and returns -1;1;0 according as whether A < B, B < A, or A = B, respectively. 

  int compare ( int A[], int B[], int n ) 
{ 
int i; 
for ( ______________________ ) { /* loop on i */ 
if ( __________________ ) return -1; 
if ( ___________________ ) return 1; 
} 
return ________________ ; 
} 

  Ans.  
int compare ( int A[], int B[], int n ) 
{ 
int i; 
for ( i=0; i<n; ++i ) { /* loop on i */ 
if ( A[i] < B[i] ) return -1; 
if ( A[i] > B[i] ) return 1; 
} 
return 0 ; 
} 
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  (b) Complete the following function that bubble sorts the rows of an m_n two-
dimensional array M with respect to the relation <. Assume that m and n are not larger 
than a suitably defined MAX_SIZE. 

  void rowsort ( int M[][MAX_SIZE], int m, int n ) 
{ 
int i, j, k, t; 
for (i = ___________ ; i >= 0; i--) { 
for ( j = _____________________ ) { 
if ( compare( __________,___________,___________ ) > ____________ ) { 
/* Swap rows */ 
for ( ________________ ) { 
________________________________ 
} 
} 
} 
} 
} 

   
5.  Consider a polynomial with real (floating-point) coefficients:  

f (X)=c0Xd0+c1Xd1+c2Xd2+_ _ _+ct-1Xdt-1 with integer degrees 0 <= d0 <= d1 <= d2 <= 
_ _ _ < =dt-1 and with coefficients ci  0. We call each ciXdi a nonzero term in f (X). 
We store f as the sequence (c0;d0); (c1;d1); (c2;d2); : : : ; (ct-1;dt-1) which is sorted with 
respect to the degrees (the second components in the pairs). We first define a term as 
follows: 
typedef struct { 
double coeff; /* The coefficient in a non-zero term */ 
int degree; /* The degree of X in the term */ 
} term; 
A polynomial is then stored as a structure instance of the following type: 
typedef struct { 
int nterms; /* The number of non-zero terms */ 
term *termlist; /* The list of terms, that is, (coefficient,degree) pairs */ 
} poly; 
We assume that the term-list contains a sequence of terms sorted in the increasing 
order of the degrees, and that no two terms have the same degree. All coefficients are 
assumed to be non-zero. Moreover, the term-list should be allocated memory just 
sufficient to store all the non-zero terms in the polynomial. 
Let us have two polynomials f and g in the above representation. We plan to compute 
their sum h = f +g again in the same representation. Before the sum is computed, the 
number of non-zero terms in h is not known, so we prepare a local array sum[] to 
store the maximum possible number of terms that can appear in the sum. The 
intermediate addition result is stored in sum[]. Finally, the term-list of h is allocated 
the exact amount of memory as needed, and the local array sum[] is copied to the 
term-list of h. 
As an example, let f (X) = 1-2X3-3X7+4X9-5X15 and g(X) = 4+3X +2X3+X9. Their 
sum can have a maximum of nine non-zero terms. The sum h(X) = f (X)+g(X) = 5+3X 
-3X7 +5X9 -5X15 actually contains only five non-zero terms. This happens because 
each of the sums 1+4 and 4X9 +X9 introduces only one new term. Moreover, the sum 
-2X3+2X3 does not add to the sum any term involving X3. 

  (a) We first write a recursive helper function to generate the intermediate array sum[]. 
This function uses a merging procedure as in merge sort (notice that the term-lists of 
f and g are sorted with respect to the degrees of the terms). The term-lists of f and g 
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are indexed by i and j, respectively. The result is stored in the intermediate array 
sum[], and the index k is used for writing to this array. Thus k stores the number of 
non-zero terms. In the recursive calls, the indices i, j and k are changed appropriately. 
The outermost call in Part (b) gets the exact number of non-zero terms in the final 
sum. Complete the helper function. 

   
  int addhelper ( poly f, poly g, int i, int j, term *sum, int k ) 

{ 
/* If both f and g are completely read, return the number of non-zero terms */ 
if ((i == f.nterms) && (j == g.nterms)) return k; 
/* If g is completely read (but not f), or the current term in f has lower degree 
than that in g, then copy the current term in f to sum */ 
if ( ( j == g.nterms ) || 
( (_______________________________________________) ) ) { 
sum[k] = _______________________________ ; 
return addhelper( _______________________ ); 
} 
/* If f is completely read (but not g), or the current term in g has lower degree 
than that in f, then copy the current term in g to sum */ 
if ( (i == f.nterms) || (________________________________ ) { 
sum[k] = _________________________ ; 
return addhelper( _______________________ ); 
} 
/* Here the current terms in both f and g have the same degree */ 
sum[k].degree = ________________________ ; 
sum[k].coeff = ____________________________ ; 
if (sum[k].coeff) ++k; /* Update k if needed */ 
return addhelper( ________________________ ); 
} 

   
  (b)Complete the following function that adds f and g by invoking the helper function of 

Part (a). 
  poly add ( poly f, poly g ) 

{ 
poly h; 
term *sum; 
int i; 
/* Allocate the maximum possible amount of memory that may be needed for sum 
*/ 
sum = ________________________________ ; 
h.nterms = addhelper(f,g,0,0,sum,0); /* Call the helper function */ 
/* Allocate the exact amount of memory to the term-list of h */ 
h.termlist = ________________________ ; 
/* Copy the intermediate array sum[] to the term-list of h */ 
______________________________________ 
___________________/* Clean locally used dynamic memory */ 
return h; 
} 

   
6.  (a) Complete the SortedMerge() function below that takes two non-empty lists, each of 

which is sorted in increasing order, and merges the them into one list which is in increasing 
order. SortedMerge() should return the new list. Assume that the elements of the lists are 
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distinct and there are no common elements among the lists. For example if the first linked 
list a is 5->10->15 and the other linked list b is 2->3->20, then SortedMerge() should return 
a pointer to the head node of the merged list 2->3->5->10->15->20. The linked list node 
structure is defined as: struct node {int data; struct node *next;}. 

  struct node *SortedMerge(struct node *a, struct node*b){  
struct node *mergedList, *head;  
if(a->data < b->data)____________________; else________________;  
head = mergedList;  
while(a!= NULL && b != NULL){  
if(a->data < b->data){mergedList->next = a; ____________;}  
else{ mergedList->next = b ;_____________;}  
mergedList = mergedList->next;  
} /* if a list is exhausted before the other */  
if(a == NULL)___________________;  
else_____________________;  
return________________;  
} 

   
  (b) Now, complete the recursive function, RecursiveSortedMerge(),to merge two 

sorted lists. 
  struct node* RecursiveSortedMerge(struct node* a, struct node* b){  

struct node* result = NULL;  
if (a==NULL)______________; /* base cases */  
else if (b==NULL)________________;  
if (a->data < b->data) { /* pick either a or b, and recur */  
result = a;  
result->next =______________________; }  
else { result = b;  
result->next =_________________________; }  
return(result); } 

   
7. Which one of the following in place sorting algorithms needs the minimum number of 

swaps? 
 (a) Quick sort  

(b) Insertion sort 
(c) Selection sort  

       (d) Heap sort.  
   
8.  Suppose we have a O(n) time algorithm that finds median of an unsorted array. Now consider 

a QuickSort implementation where we first find median using the above algorithm, then use 
median as pivot. What will be the worst case time complexity of this modified QuickSort. 

  (a) O(n^2 Logn) 
      (b) O(n^2) 
      (c) O(n Logn Logn) 
      (d) O(nLogn) 

   
9.  In quick sort, for sorting n elements, the (n/4)th smallest element is selected as pivot using 

an O(n) time algorithm. What is the worst case time complexity of the quick sort?   
  (a) \theta(n)  

(b) \theta(nLogn)  
(c) \theta(n^2)  
(d) \theta(n^2 log n)  

   
10.  (a) Consider a binary max-heap implemented using an array. Which one of the following 

array represents a binary max-heap? 
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  (a) 25,12,16,13,10,8,14 
(b) 25,14,13,16,10,8,12 
(c) 25,14,16,13,10,8,12 
(d) 25,14,12,13,10,8,16 

    
  (b) Consider the data given in above question. What is the content of the array after two 

delete operations on the correct answer to the previous question? 
  (a) 14,13,12,10,8 

(b) 14,12,13,8,10 
(c) 14,13,8,12,10 
(d) 14,13,12,8,10 

    
11.  Which one of the following is the tightest upper bound that represents the number of swaps 

required to sort n numbers using selection sort? 
  (a) O(log n) 

(b) O(n) 
(c) O(nLogn) 
(d) O(n^2) 

    
12.  Let P be a quick sort program to sort numbers in ascending order using the first 

element as the pivot. Let t1 and t2 and t2 be the number of comparisons made by P 
for the inputs [1 2 3 4 5] and [4 1 5 3 2] respectively. Which one of the following 
holds? 

  (a) t1 =5  
(b) t1 < t2  

(c) t1>t2  

(d) t1 = t2 

    
13.  Given max heap with level order elements as 10, 8, 5, 3, 2 in order. Insert 1 and 7 into 

the heap tree and find the BFS of the resultant tree. 
  (a) # 

(b) # 
(c) 10, 8, 7, 3, 2, 1, 5 
(d) # 

    
14.  In an array middle element is choosen as pivot element. What is the worst case time 

complexity of quick sort? 
  (a) O(n2) 

(b) O(nlogn) 
(c) O(logn) 
(d) O(n3) 

    
15.  Consider a max heap, represented by the array: 40, 30, 20, 10, 15, 16, 17, 8, 4. Now consider 

that a value 35 is inserted into this heap. After insertion, the new heap is
  (a) 40, 30, 20, 10, 15, 16, 17, 8, 4, 35 

(b) 40, 35, 20, 10, 30, 16, 17, 8, 4, 15 
(c) 40, 30, 20, 10, 35, 16, 17, 8, 4, 15 
(d) 40, 35, 20, 10, 15, 16, 17, 8, 4, 30 
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